Pirin Allosterically Modulates The Dynamics And Interactions Of The κB DNA In The NF-κB Supramolecular Complex
نویسندگان
چکیده
The NF-κB family of transcription factors controls a number of essential cellular functions. Pirin is a non-heme iron (Fe) redox specific co-regulator of NF-κB (p65) and has been shown to modulate the affinity between the homodimeric p65 and the DNA. The allosteric effect of the active Fe(III) form of Pirin on the DNA is not known and has not been investigated. We carry out multiple microsecond-long molecular dynamics simulations of the free DNA, p65DNA complex, and the Pirin-p65-DNA supramolecular complexes in explicit water. We show that, unlike the Fe(II) form of Pirin, the Fe(III) form in the Pirin-p65-DNA supramolecular complex enhances the interactions and affinity between p65 and the DNA, in agreement with experiments. The results further provide atomistic details of the effect of the Fe(III) form of Pirin on the DNA upon binding to p65 to form the supramolecular complex. INDEX WORDS: NF-κB, PIRIN, DNA, TRANSCRIPTION FACTOR, PRECURSOR PROTEIN, IRON
منابع مشابه
Studying the DNA Binding and Conformation of Metal-Binding Site Mutations in Pirin
The transcription factor NF-κB interacts with many other co-regulator proteins that modulate its binding and transcriptional activity. One of these co-regulators, Pirin, is an irondependent metalloprotein that has been shown to enhance the DNA binding of NF-κB homodimers. Here, we characterize the interactions between Pirin and its known NF-κB binding partners and examined the role of Bcl-3, a ...
متن کاملPirin is an iron-dependent redox regulator of NF-κB.
Pirin is a nuclear nonheme Fe protein of unknown function present in all human tissues. Here we describe that pirin may act as a redox sensor for the nuclear factor κB (NF-κB) transcription factor, a critical mediator of intracellular signaling that has been linked to cellular responses to proinflammatory signals and controls the expression of a vast array of genes involved in immune and stress...
متن کاملHyperglycemia- Induced NF-κB Activation Increases microRNA-146a Expression in Human Umbilical Vein Endothelial Cells
Background & objectives: Nuclear Factor kappa B (NF-κB), a master switch transcription factor, plays a critical role in the progression and development of hyperglycemia-induced microangiopathy. Hyperglycemia activates NF-κB, and subsequently increases pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β leading to development of inflammation. Some new studies have revealed the involvement o...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملThe effects of adenosine injection after of brain ischemia reperfusion injury on gene expression of NF-kB/p65 and activity level of ROS in male Wistar rats
Background: Unit of p65 is one of the subunits of NF-κB and its phosphorylation by stress oxidative causes activation of NF-κB. The aim of present study was to investigate the effects of adenosine injection after brain ischemia reperfusion injury on gene expression of NF-κB /p65 and Reactive Oxygen Species (ROS) in hippocampus tissue of male wistar rats. Methods: 40 male wistar rats were rando...
متن کامل